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Kullback-Leibler divergence

The directed Kullback-Leibler divergence between 
Exp(λ0) ('true' distribution) and Exp(λ) ('approximating' 
distribution) is given by:
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• Bregman divergence

• Jensen–Shannon divergence:  The Bregman distance 
associated with F for points (P, Q), is the difference 
between the value of F at point P and the value of the first-
order Taylor expansion of F around point Q evaluated at 
point P. F is a continuously-differentiable real-valued and 
strictly convex function defined on a closed convex set.

• Deviance information criterion
• Bayesian information criterion
• Quantum relative entropy
• Information gain in decision trees
• Solomon Kullback and Richard Leibler
• Information theory and measure theory
• Entropy power inequality
• Information gain ratio
• F-divergence
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Principal Component Analysis

 Eigen analysis, Karhunen-Loeve transform 

 Eigenvectors: derived from Eigen decomposition of the 
scatter matrix 

 A projection set that best explains the distribution of 
the representative features of an object of interest.

 PCA techniques choose a dimensionality-reducing 
linear projection that maximizes the scatter of all 
projected samples.



Principal Component Analysis Contd.

• Let us consider a set of N sample images {x1, x2, ……., xN} 
taking values in n-dimensional image space.

• Each image belongs to one of c classes {X1, X2,..…, Xc}.

• Let us consider a linear transformation, mapping the 
original n-dimensional image space to m-dimensional 
feature space, where    m < n.

• The new feature vectors  yk є Rm are defined by the linear 
transformation –

k = 1, 2,……, N

where,  W є Rnxm is a matrix with orthogonal columns 
representing the basis in feature space.



Principal Component Analysis Contd..
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• Total scatter matrix ST is defined as 

where, N is the number of samples , and μ € Rn is the mean 
image of all samples .

• The scatter of transformed feature vectors {y1,y2,….yN} is 
WTSTW.

• In PCA, Wopt is chosen to maximize the determinant of the 
total scatter matrix of projected samples, i.e.,

WSWW T
T

W
opt maxarg

where {wi | i= 1,2,….,m} is the set of n dimensional eigenvectors 
of ST corresponding to m largest eigenvalues (check proof).
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• Eigenvectors are called eigen images/pictures and also 
basis images/facial basis for  faces.

• Any data (say, face) can be reconstructed approximately as 
a weighted sum of a small collection of images that define a 
facial basis (eigen images) and a mean image of the face. 

Principal Component Analysis Contd.

• Data form a scatter in the feature space through 
projection set (eigen vector set)

• Features (eigenvectors) are extracted from the training 
set without prior class information 

Unsupervised learning



Demonstration of KL Transform

First 
eigen 
vector

Second 
eigen 
vector



Another One



Another Example

Source:  SQUID Homepage



Principal components analysis (PCA) is a technique 
used to reduce multi-dimensional data sets to lower 
dimensions for analysis. 

The applications include exploratory data analysis and 
generating predictive models. PCA involves the computation of the 
eigenvalue decomposition or Singular value decomposition of a data 
set, usually after mean centering the data for each attribute.

PCA is mathematically defined as an orthogonal linear 
transformation, that transforms the data to a new coordinate 
system such that the greatest variance by any projection of 
the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on.

PCA can be used for dimensionality reduction in a data 
set by retaining those characteristics of the data set that 
contribute most to its variance, by keeping lower-order 
principal components and ignoring higher-order ones. Such 
low-order components often contain the "most important" 
aspects of the data. But this is not necessarily the case, 
depending on the application.



For a data matrix, XT, with zero empirical mean (the 
empirical mean of the distribution has been subtracted from 
the data set), where each column is made up of results for a 
different subject, and each row the results from a different 
probe. This will mean that the PCA for our data matrix X will 
be given by:
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Unlike other linear transforms (DCT, DFT, DWT etc.), 
PCA does not have a fixed set of basis vectors. Its basis 
vectors depend on the data set. 

Goal of PCA:
Find some orthonormal matrix WT, where Y = WTX; 

such that 
COV(Y) ≡ (1/(n−1))YYT is diagonalized.

The rows of W are the principal components of X, 
which are also the eigenvectors of COV(X).



SVD – the theorem

Suppose M is an m-by-n matrix whose entries come from the field K, 
which is either the field of real numbers or the field of complex numbers. Then 
there exists a factorization of the form

M = UΣV*

where U is an m-by-m unitary matrix over K, the matrix Σ is m-by-n with 
nonnegative numbers on the diagonal and zeros off the diagonal, and V* 
denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a 
factorization is called a singular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input" or "analysing" 
basis vector directions for M. 

The matrix U contains a set of orthonormal "output" basis vector 
directions for M. The matrix Σ contains the singular values, which can be 
thought of as scalar "gain controls" by which each corresponding input is 
multiplied to give a corresponding output. 

A common convention is to order the values Σi,i in non-increasing 
fashion. In this case, the diagonal matrix Σ is uniquely determined by M 
(though the matrices U and V are not).

For p = min(m,n) — U is m-by-p, Σ is p-by-p, and V is n-by-p.



The Karhunen-Loève transform is therefore equivalent 
to finding the singular value decomposition of the data matrix 
X, and then obtaining the reduced-space data matrix Y by 
projecting X down into the reduced space defined by only the 
first L singular vectors, WL:

The matrix W of singular vectors of X is equivalently 
the matrix W of eigenvectors of the matrix of observed 
covariances C = X XT (find out?) =:

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest 
correlation in the data set. PCA is equivalent to empirical 
orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it 
is not optimized for class separability. An alternative is the 
linear discriminant analysis, which does take this into 
account. PCA optimally minimizes reconstruction error under 
the L2 norm.
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PCA by COVARIANCE Method
We need to find a dxd orthonormal transformation matrix WT, such that:

XWY Twith the constraint that:
Cov(Y) is a diagonal matrix, and  W-1 =  WT.
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Example of PCA
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3-D problem, with N = 3. 

Each column is an observation (sample) and each row a variable (dimension), 

Method – 1 (easiest)

Mean of the samples: 
;
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Method – 2 (PCA defn.) T
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1.7778    0.4444         0
0.4444    0.1111         0

0         0                 0

C2 =
5.4444   -3.8889    2.3333
-3.8889    2.7778   -1.6667
2.3333   -1.6667    1.0000

C3 =
13.4444   -4.8889    3.6667
-4.8889    1.7778   -1.3333
3.6667   -1.3333    1.0000

SigmaC =
20.6667   -8.3333    6.0000
-8.3333    4.6667   -3.0000
6.0000   -3.0000    2.0000

COVAR =
SigmaC/2 =

10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

Next do SVD, to get vectors.



For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or Xavg of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often XTX of dimension N*N is considered for eigen-analysis. Will 
it result in the same, after SVD? Lets check:



























236
33

14
3

25
63

25
3

62

)2/1(
~~ T

XXS


~~

XXS Tm

10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

0.9444    1.2778   -2.2222
1.2778    4.6111   -5.8889
-2.2222   -5.8889    8.1111

Lets do SVD of both:



U =

-0.8846   -0.4554   -0.1010
0.3818   -0.8313    0.4041
-0.2680    0.3189    0.9091

S =

13.0404         0         0
0    0.6263         0
0         0    0.0000

V =

-0.8846   -0.4554    0.1010
0.3818   -0.8313   -0.4041
-0.2680    0.3189   -0.9091

U =

-0.2060    0.7901    0.5774
-0.5812   -0.5735    0.5774
0.7872   -0.2166    0.5774

S =

13.0404         0         0
0    0.6263         0
0         0    0.0000

V =

-0.2060    0.7901    0.5774
-0.5812   -0.5735    0.5774
0.7872   -0.2166    0.5774
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10.3333   -4.1667    3.0000
-4.1667    2.3333   -1.5000
3.0000   -1.5000    1.0000

0.9444    1.2778   -2.2222
1.2778    4.6111   -5.8889
-2.2222   -5.8889    8.1111
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Example, where d <> N:Samples:
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2-D problem (d=2), with N = 6. 

Each column is an observation (sample) 
and each row a variable (dimension), 

Mean of the samples: 
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X =
-3    -2    -1     4     5     6
-3    -2    -1     4     5     7

XM=
-4.5000   -3.5000   -2.5000    2.5000   3.5000  4.5000
-4.6667   -3.6667   -2.6667    2.3333   3.3333  5.3333

COVAR(X) = XM * XMT 

=     77.5000   82.0000
82.0000   87.3333

XMT * XM = 
42.0278   32.8611   23.6944  -22.1389   -31.3056  -45.1389
32.8611   25.6944   18.5278  -17.3056   -24.4722  -35.3056
23.6944   18.5278   13.3611  -12.4722   -17.6389  -25.4722
-22.1389  -17.3056  -12.4722   11.6944    16.5278   23.6944
-31.3056  -24.4722  -17.6389   16.5278    23.3611   33.5278
-45.1389  -35.3056  -25.4722   23.6944    33.5278   48.6944



COVAR(X) = XM * XMT 

=     77.5000   82.0000
82.0000   87.3333

XMT * XM = 
42.0278   32.8611   23.6944  -22.1389   -31.3056  -45.1389
32.8611   25.6944   18.5278  -17.3056   -24.4722  -35.3056
23.6944   18.5278   13.3611  -12.4722   -17.6389  -25.4722
-22.1389  -17.3056  -12.4722   11.6944    16.5278   23.6944
-31.3056  -24.4722  -17.6389   16.5278    23.3611   33.5278
-45.1389  -35.3056  -25.4722   23.6944    33.5278   48.6944

U =

-0.6856   -0.7280
-0.7280    0.6856

S =

164.5639         0
0  0.2694

V =

-0.6856   -0.7280
-0.7280    0.6856

U =
-0.5053   -0.1469   -0.7547    0.3882    0.0214    0.0486
-0.3951   -0.0654    0.3632    0.0984   -0.4091    0.7284
-0.2849    0.0162   -0.0433   -0.3456   -0.7396   -0.5002
0.2660    0.4241   -0.5083   -0.5306   -0.1150    0.4429
0.3762    0.5057   -0.0258    0.6601   -0.4043   -0.0539
0.5432   -0.7337   -0.1938    0.0541   -0.3293    0.1332

S = 
164.5639         0         0         0 0 0

0    0.2694         0         0 0 0
0            0        0.0        0 0 0
0            0         0        0.0 0 0
0            0         0         0 0.0 0
0            0         0         0 0 0.0

V = U ??
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