


Kullback-Leibler divergence

The directed Kullback-Leibler divergence between
Exp(A,) ('true’ distribution) and Exp(A) ('approximating’
distribution) is given by: /\L

A(of[A) = log(o) — log(A) + 1= — 1.

Dy (P||@Q) = ZP 1) log E ;

D (p.0=F pihlog 75 p(') -3 piy+ S q0)

or

Dy (P,0) ==, p(i)logq(i)+ ), p(i)log p(i)

=H(p,q) - H(p)
= cross_entopy(P& Q) - entropy(p)






Bregman divergence
Dyss(P: @) = F(p)-F(@)—(VF(@),p—0)

Jensen-Shannon divergence: The Bregman distance
associated with F for points (P, Q), is the difference
between the value of F at point P and the value of the first-
order Taylor expansion of F around point Q evaluated at
point P. F is a continuously-differentiable real-valued and
strictly convex function defined on a closed convex set.

D,.(p.q) =2k M); DOQM). hereM = (P+Q)/2

Deviance information criterion
Bayesian information criterion
Quantum relative entropy

Information gain in decision trees
Solomon Kullback and Richard Leibler
Information theory and measure theory
Entropy power inequality

Information gain ratio

F-divergence




Principal Component Analysis

“* Eigen analysis, Karhunen-Loeve transform

“ Eigenvectors: derived from Eigen decomposition of the
scatter matrix

% A projection set that best explains the distribution of
the representative features of an object of interest.

% PCA techniques choose a dimensionality-reducing
linear projection that maximizes the scatter of all
projected samples.




Principal Component Analysis Contd.

* Let us consider a set of NV sample images {x,, x,,
taking values in n-dimensional image space.

* Each image belongs to one of ¢ classes {X;, X,,....., X_}.
 Let us consider a linear transformation, mapping the
original n-dimensional image space to m-dimensional
feature space, where m <n.

* The new feature vectors y, ¢ R™ are defined by the linear
transformation —

where, We R™™ is a matrix with orthogonal columns
representing.the basis in feature space.




Principal Component Analysis Contd..

* Total scatter matrix S is defined as

where, NV is the numbe .
image of all samples . )]

* The scatter of transfo
WIS . W.

* In PCA, W, is chosen to maximize the determinant of the
total scatter matrix of projected samples, i.e.,

W, =arg maxw's,w|
W

where {w; | iI=1,2,....,m} is the set of n dimensional eigenvectors
of S corresponding to m largest eigenvalues (check proof).




Principal Component Analysis Contd.

- Eigenvectors are called eigen images/pictures and also
basis images/facial basis for faces.

- Any data (say, face) can be reconstructed approximately as
a weighted sum of a small collection of images that define a
facial basis (eigen images) and a mean image of the face.

- Data form a scatter in the feature space through
projection set (eigen vector set)

* Features (eigenvectors) are extracted from the training
set without prior class information

=» Unsupervised learning




Demonstration of KL Transform
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Another Example

Object plot after Translation

-200
-200 -150 -100 - 100 150

Source: SQUID Homepage




Principal components analysis (PCA) is a technique
used to reduce multi-dimensional data sets to lower
dimensions for analysis.

The applications include exploratory data analysis and
generating predictive models. PCA involves the computation of the
eigenvalue decomposition or Sinqular value decomposition of a data
set, usually after mean centering the data for each attribute.

PCA is mathematically defined as an orthogonal linear
transformation, that transforms the data to a new coordinate
system such that the greatest variance by any projection of

the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the
second coordinate, and so on.

PCA can be used for dimensionality reduction in a data
set by retaining those characteristics of the data set that
contribute most to its variance, by keeping lower-order
principal components and ighoring higher-order ones. Such
low-order components often contain the "most important”
aspects of the data. But this is not necessarily the case,
depending on the application.




For a data matrix, X7, with zero empirical mean (the
empirical mean of the distribution has been subtracted from
the data set), where each column is made up of results for a
different subject, and each row the results from a different

probe. This will mean that the PCA for our data matrix X will
be given by:

Y=W'X=xV",

where WZV ' is the singular value decomposition (SVD) of X.

Goal of PCA:

Find some orthonormal matrix W7, where Y = WTX;
such that

COV(Y) = (1/(n—-1))YYT is diagonalized.

The rows of W are the principal components of X,
which are also the eigenvectors of COV(X).

Unlike other linear transforms (DCT, DFT, DWT etc.),
PCA does not have a fixed set of basis vectors. Its basis
vectors depend on the data set.




SVD - the theorem

Suppose M is an m-by-n matrix whose entries come from the field K,
which is either the field of real numbers or the field of complex numbers. Then
there exists a factorization of the form

M= UzV~"

where U is an m-by-m unitary matrix over K, the matrix Z is m-by-n with
nonnegative numbers on the diagonal and zeros off the diagonal, and V*
denotes the conjugate transpose of V, an n-by-n unitary matrix over K. Such a
factorization is called a singular-value decomposition of M.

The matrix V thus contains a set of orthonormal "input” or "analysing”
basis vector directions for M.

The matrix U contains a set of orthonormal "output” basis vector
directions for M. The matrix £ contains the singular values, which can be
thought of as scalar "gain controls™ by which each corresponding input is
multiplied to give a corresponding output.

A common convention is to order the values Z,;; in non-increasing
fashion. In this case, the diagonal matrix Z is uniquely determined by M
(though the matrices U and V are not).

For p = min(m,n) — U is m-by-p, 2 is p-by-p, and V is n-by-p.




The Karhunen-Loeve transform is therefore equivalent
to finding the sinqular value decomposition of the data matrix
X, and then obtaining the reduced-space data matrix Y by
projecting X down into the reduced space defined by only the

first L singular vectors, W, :
X=WZV'; Y=W'X=3V/

The matrix W of singular vectors of X is equivalently
the matrix W of eigenvectors of the matrix of observed
covariances C = X XT

COV(X)=XXT =WZZ"WT =WDW’

The eigenvectors with the largest eigenvalues
correspond to the dimensions that have the strongest
correlation in the data set. PCA is equivalent to empirical

orthogonal functions (EOF).

PCA is a popular technique in pattern recognition. But it
iIs not optimized for class separability. An alternative is the
linear discriminant analysis, which does take this into
account. PCA optimally minimizes reconstruction error under
the L, norm.




PCA by COVARIANCE Method

We need to find a dxd orthonormal transformation matrix WT, such that:

with the constraint that:

Cov(Y) is a diagonal matrix, and W-1 = WT,
COV(Y)=E[YY']=E[W X)W 'X)"]
— E[W T X)(X™W)]=WTE[XXTW

~WTCOV (X)W =W (WDWT)W =D

WCOV (Y ) =WW 'COV (X W =COV (X W

Can you derive from the above, that:

:Awlaﬁzwza 9/1de]:
'COV (X )W,,COV (X W, ,.....,COV (X W,]




Xl and y do not fully describe the distribution
A 2x2 covariance matrix is needed; the

X = . directions of the arrows correspond to the
’ eigenvectors of this covariance matrix ani
Xn their lengths to the square roots of the
eigenvalues.

are random variables, each with finite variance, then the covariance matrix Z is the matrix whose (/, j) entry is the covariance
Bij = cov(Xi, X;) = E[(Xi — i) (X; — )]

where
Hi = E(Xi)

is the expected value of the fth entry in the vector X 1% "%l | other words, we have

(E[(X; — ) (X1 — )] E[(Xq — ) (Xo— p2)] -+ E[(Xq — 1) (X — ptn)] ]

E[(X2 — po)( Xy — 1)) E[(Xo — o) (X — p2)] --- E[(Xo — p2)(Xi — pta)]

_E[(X,, — k) (X1 — )] E[(Xn — pn)(X2 — p2)] -+ E[(Xn — pn)(Xn — ﬂn)]_

The inverse of this matrix, Y7~ 1 is the inverse covariance matrix, also known as the concentration matrix or precision matrix;" see precision (statistics). The elements of the precision
matrix have an interpretation in terms of partial correlations and partial variances.[#3ten needed]

Generalization of the variance [e

The definition above is equivalent to the matrix equality
% =E (X - E[X]) (X - E[X))"]

This form can be seen as a generalization of the scalar-valued variance to higher dimensions. Recall that for a scalar-valued random variable X

o® = var(X) = E[(X - E(X))’] = E[(X - E(X)) - (X — E(X))].

Indeed, the entries on the diagonal of the covariance matrix E are the variances of each element of the vector x

Conflicting nomenclatures and notations [e

Nomenclatures differ. Some statisticians, following the probabilist William Feller, call this matrix the variance of the random vector X, because it is the natural generalization to higher
dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar components of the vector X. Thus

var(X) = cov(X) = E [(X — E[X])(X — E[X])"] .
However, the notation for the cross-covariance befween two vectors is standard:

cov(X,Y) = E [(X - E[X])(Y - E[Y])"].



The var notation is found in William Feller's two-volume book An Introduction to Probability Theory and Its Applications,” but both forms are quite standard and there is no ambiguity between
them.

The matrix ¥ is also often called the variance-covariance matrix since the diagonal terms are in fact variances.

Properties [edit]

Fory, = E [(X - E[X]) (X - E[X])T] and g = E(X), where X is a random p-dimensional variable and Y a random g-dimensional variable, the following basic properties
apply:[etaton necded]
2 = E(XXT) - pup”
¥ is positive-semidefinite and symmetric.
cov(AX +a) = A cov(X) AT
cov(X,Y) = cov(Y,X)T
cov(X; + X5,Y) = cov(X;,Y) +cov(Xa Y)
itp=q.then var(X + Y) = var(X) + cov(X,Y) + cov(Y, X) + var(Y)
cov(AX +a,B"Y + b) = A cov(X,Y)B
8. It X and "y are independent or uncorrelate, then COV(X, Y) =0
where X \ Xl and X, are random px1 vectors, Y is a random gx1 vector, & is a gx1 vector, by is a px1 vector, and A and B are gxp matrices.

N oo s~ 0N

This covariance matrix is a useful tool in many different areas. From it a transformation matrix can be derived, called a whitening transformation, that allows one to completely decorrelate the
datale*sten needed] or from a different point of view, to find an optimal basis for representing the data in a compact way!“=%" "eeddl (see Rayleigh quotient for a formal proof and additional
properties of covariance matrices). This is called principal components analysis (PCA) and the Karhunen-Loéve transform (KL-transform).

As a linear operator [edit]

Applied to one vector, the covariance matrix maps a linear combination, ¢, of the random variables, X, onto a vector of covariances with those variables: ¢ 1 3] = CCN(CTX, X)

Treated as a bilinear form, it yields the covariance between the two linear combinations: d T ¢ = COV(dTX, CTX). The variance of a linear combination is then T Y1¢, its
covariance with itself.

Similarly, the (pseudo-)inverse covariance matrix provides an inner product, (C - ﬂl nt |C - ”> which induces the Mahalanobis distance, a measure of the "unlikelihood" of ¢.[cstion needed)

Which matrices are covariance matrices? [edit]

From the identity just above, let |y be a ( P X 1) real-valued vector, then
T T
var(b" X) =b" var(X)b,
which must always be nonnegative since it is the variance of a real-valued random variable. and the symmetry of the covariance matrix's definition it follows that only a positive-semidefinite
matrix can be a covariance matrix [%fen needed] The answer to the converse question, whether every symmetric positive semi-definite matrix is a covariance matrix, is "yes " To see this,

suppose M is a pxp positive-semidefinite matrix. From the finite-dimensional case of the spectral theorem, it follows that M has a nonnegative symmetric square root, that can be denoted by
M'Z. Let X be any px1 column vector-valued random variable whose covariance matrix is the pxp identity matrix. Then

var(M"/?X) = M"?(var(X))M'/? = M.



Samples:

X, =

3-D problem, with N = 3.

Example of PCA

1 -2 4
X=|1 3 0
2 1 3

Each column is an observation (sample) and each row a variable (dimension),

Mean of the samples:

My =

Method — 1 (easiest)

> 1
Il
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Method — 2 (PCA defn.)

C1=
1.7778 0.4444 0
0.4444 0.1111 0
0 0 0

C2=
5.4444 -3.8889 2.3333
-3.8889 2.7778 -1.6667
2.3333 -1.6667 1.0000

SigmaC =

20.6667 -8.3333 6.0000
-8.3333 4.6667 -3.0000
6.0000 -3.0000 2.0000

Next do SVD, to get vectors.

S _(—)Z(Xk (X, — /U)

C3 =
13.4444 -4.8889 3.6667
-4.8889 1.7778 -1.3333
3.6667 -1.3333 1.0000

COVAR =
SigmaC/2 =

10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

X1 = —%;;(22 % ;)~(3=

9 o



For a face image with N samples and dimension d (=w*h, very large), we have:

The array X or Xavg of size d*N (N vertical samples stacked horizontally)

Thus XXT will be of d*d, which will be very large. To perform eigen-
analysis on such large dimension is time consuming and may be erroneous.

Thus often X™X of dimension N*N is considered for eigen-analysis. Will
it result in the same, after SVD? Lets check:

1% -

S=XX =(1/2) 2/

% 6

14 10.3333 -4.1667 3.0000
/ — — -4.1667 2.3333 -1.5000
2

3.0000 -1.5000 1.0000

0.9444 1.2778 -2.2222
1.2778 4.6111 -5.8889
-2.2222 -5.8889 8.1111

Lets do SVD of both:



_T
S=XX =
10.3333 -4.1667 3.0000

-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

U=

-0.8846 -0.4554 -0.1010
0.3818 -0.8313 0.4041
-0.2680 0.3189 0.9091

13.0404 0 0
0 0.6263 0
0 0 0.0000

V =
-0.8846 -0.4554 0.1010

0.3818 -0.8313 -0.4041
-0.2680 0.3189 -0.9091

10.9444 12778 -2.2222
1.2778 4.6111 -5.8889
-2.2222 -5.8889 8.1111

U=

-0.2060 0.7901 0.5774
-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774

13.0404 0 0
0 0.6263 0
0 0 0.0000

V =
-0.2060 0.7901 0.5774

-0.5812 -0.5735 0.5774
0.7872 -0.2166 0.5774



Samples:

Example, where d <> N:

-3 —2 —1 4 S 6
X — . . X — . X — . X — . X — .
1 s /N3 s Ny s /\5 s N6 9
-3 —2 —1 4 S 7
2-D problem (d=2), with N = 6. X =
3 2 1 4 5 6
Each column is an observation (sample) 3 2 1 4 5 7

and each row a variable (dimension),

Mean of the samples:
[3/2]
BT ls 3]

COVAR(X) = XM * XMT

XM=
-4.5000 -3.5000
-4.6667 -3.6667

-2.5000
-2.6667

2.5000 3.5000 4.5000
2.3333 3.3333 5.3333

XMT* XM =

42.0278 32.8611 23.6944 -22.1389
32.8611 25.6944 18.5278 -17.3056
23.6944 18.5278 13.3611 -12.4722
-22.1389 -17.3056 -12.4722 11.6944
-31.3056 -24.4722 -17.6389 16.5278
-45.1389 -35.3056 -25.4722 23.6944

-31.3056 -45.1389
-24.4722 -35.3056
-17.6389 -25.4722
16.5278 23.6944
23.3611 33.5278
33.5278 48.6944

= 77.5000 82.0000
82.0000 87.3333



COVAR(X) = XM * XMT

= 77.5000 82.0000
82.0000 87.3333

U=

-0.6856 -0.7280

-0.7280 0.6856

S =

164.5639 0

0 0.2694

V=

-0.6856 -0.7280
-0.7280 0.6856

42.0278 32.8611
32.8611 25.6944
23.6944 18.5278
-22.1389 -17.3056
-31.3056 -24.4722
-45.1389 -35.3056

U=
-0.5053 -0.1469
-0.3951 -0.0654
-0.2849 0.0162

XMT* XM =

23.6944 -22.1389
18.5278 -17.3056
13.3611 -12.4722
-12.4722 11.6944
-17.6389 16.5278
-25.4722 23.6944

-0.7547

-31.3056 -45.1389
-24.4722 -35.3056
-17.6389 -25.4722
16.5278 23.6944
23.3611 33.5278
33.5278 48.6944

0.3882 0.0214 0.0486

0.3632
-0.0433

0.0984
-0.3456

-0.4091
-0.7396

0.7284
-0.5002

0.2660
0.3762
0.5432

S =
164.5639

0 0.269

0

o OO

0.4241
0.5057
-0.7337

~ O

oo O oo

-0.5083
-0.0258
-0.1938

-0.5306
0.6601
0.0541

0
0
.0

o
o O oo

o oo
oo
cooooo

-0.1150 0.4429
-0.4043 -0.0539
-0.3293 0.1332

eNeoNoNoNaola

V=U??
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